Saturday, September 3, 2016

MIT ME's create steam using ambient sunlight with bubble wrap

Steam generation under one sun enabled by a floating structure with thermal concentration : Nature Energy

Author Affiliations

  • Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
    • George Ni, Gabriel Li, Svetlana V. Boriskina & Gang Chen
  • Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates
    • Hongxia Li, Weilin Yang & TieJun Zhang
The authors have applied for a patent for this technology, but have no other competing interests.

Abstract

Harvesting solar energy as heat has many applications, such as power generation, residential water heating, desalination, distillation and wastewater treatment. However, the solar flux is diffuse, and often requires optical concentration, a costly component, to generate the high temperatures needed for some of these applications. Here we demonstrate a floating solar receiver capable of generating 100 C steam under ambient air conditions without optical concentration. The high temperatures are achieved by using thermal concentration and heat localization, which reduce the convective, conductive and radiative heat losses. This demonstration of a low-cost and scalable solar vapour generator holds the promise of significantly expanding the application domain and reducing the cost of solar thermal systems.
Sponge creates steam using ambient sunlight | MIT News
In their new design, the researchers [George Ni | LinkedIn, MECHE PEOPLE: Gang Chen | MIT Department of Mechanical Engineering] settled on a spectrally-selective absorber — a thin, blue, metallic-like film that is commonly used in solar water heaters and possesses unique absorptive properties. The material absorbs radiation in the visible range of the electromagnetic spectrum, but it does not radiate in the infrared range, meaning that it both absorbs sunlight and traps heat, minimizing heat loss.
The researchers obtained a thin sheet of copper, chosen for its heat-conducting abilities and coated with the spectrally-selective absorber. They then mounted the structure on a thermally-insulating piece of floating foam. However, they found that even though the structure did not radiate much heat back out to the environment, heat was still escaping through convection, in which moving air molecules such as wind would naturally cool the surface.
But we tried the clearer bubble wrap with bigger bubbles for more air trapping effect, and it turns out, it works. Now because of this bubble wrap, we don’t need mirrors to concentrate the sun.” The bubble wrap, combined with the selective absorber, kept heat from escaping the surface of the sponge. Once the heat was trapped, the copper layer conducted the heat toward a single hole, or channel, that the researchers had drilled through the structure. When they placed the sponge in water, they found that water crept up the channel, where it was heated to 100 C, then turned to steam.
Tao Deng, professor of material sciences and engineering at Shanghai Jiao Tong University, says the group’s use of low-cost materials will make the device more affordable for a wide range of applications.
“This device offers a totally new design paradigm for solar steam generation,” says Deng, who was not involved in the study. “It eliminates the need of the expensive optical concentrator, which is a key advantage in bringing down the cost of the solar steam generation system. Certainly the clever use of bubble wrap and commercially available selective absorber also helps suppress the convection and radiation heat loss, both of which not only improve the solar harvesting efficiency but also further lower the system cost. “
Chen and Ni say that solar absorbers based on this general design could be used as large sheets to desalinate small bodies of water, or to treat wastewater. Ni says other solar-based technologies that rely on optical-concentrating technologies typically are designed to last 10 to 20 years, though they require expensive parts and maintenance. This new, low-tech design, he says, could operate for one to two years before needing to be replaced.

spendergast: MIT creates graphite sponge to efficiently sterilize water

No comments: